Den fysikaliska forskningens vägar

Föredrag av Fil. Lic. Anna Beckman

Denna artikel är ur ”Röster i Radio” 1932;våren och har också tidigare publicerats i föreningens årsskrift 1988.

Den fysikaliska forskningen använder tre metoder nämligen den filosofiska, den matematiska och den experimentella. Det filosofiska tänkandet skapar hypoteser eller teorier. med matematikens hjälp härledas ur dessa vissa måttförhållanden, vilka konetrolleras genom experiment och observationer. De sistnämnda äro i sista hand utslagsgivande, när det gäller att avgöra en teoris värde, de kunna också ge material till nya hypoteser. Fysiken blomstrade upp först när den experimentella metoden planmässigt började användas. Det skedde mot slutet av 1500-talet.

Att experimenten bidragit att vidga vårt kunskapsområde särskilt påtagligt inom elektricitetsläran. Genom enbart filosoferande hade mänskligheten näppeligen fått någon kännedom om sådana fenomen som elektriska strömmar och urladdningar i förtunnade gaser eller de underbara strålar, som numera i så hög grad är föremål för utforskning.

Intresset för elektriciteten väcktes till liv genom de experiment, som utförde av drottning
Elisabets läkare, Gilbert (1540-1603). Det var han, som gav namnet elektrisk kraft åt den
dragningskraft, som genom gnidning kan meddelas åt vissa ämnen. Ordet elektrisk bildade han av det grekiska elektron (= bärnsten). Redan grekerna hade nämligen haft kännedom om att detta ämne genom att gnidas fick förmåga att draga till sig lätta föremål. Men Gilbert experimenterade med massor av andra substanser och visade, att den elektriska kraften visst ej är bunden endast till bärnsten. Med skäl kan han därför betraktas som elektricitetslärans fader. – Forskare i skilda länder upprepade hans experiment och gjorde nya rön angående den mystiska kraften, om länge syntes svag och obetydlig i sina verkningar. Plötsligt framträdde den med överraskande styrka. Musschenbroek (1692-1761), professor i fysik i Leyden, ledde nämligen elektricitet ned i en glasflaska, fylld med vatten. När han sedan urladdade flaskan genom sin kropp, fick han ett häftigt slag. Obekant med Musschenbroeks iakttagels gjorde en tysk, von Kleist, samma år (1745) en liknande erfarenhet.

Av en tillfällighet märkte den italienske läkaren och naturforskaren Galvani (1737 -1798),
att det utvecklades elektricitet då en nyss dödad groda medelst en metallkrok upphängdes på ett järnstaket. Själv ansåg han sig ha funnit ett slags animal elektricitet, alstrad av djurkroppen. Volta (1745 -1827), professor i fysik i Como och Pavia, visade emellertid, att den elektriska strömmen uppstår, när två metaller av olika art nedsänkes i en vätska. Forsknirrgen hade därigenom lärt känna ett nytt sätt att alstra elektricitet. En annan viktig upptäckt gjordes likaledes även tillfällighet, då två engelska forskare Nicholson och Carlysle. lade märke till att en vätska, som genomflytes av en elektrisk ström, sönderdelas kemiskt. Davy (1778 -1829), professor i London, gjorde noggranna undersökningar över denna företeelse och fann med des hjälp de förut okända metallerna natrium och kalium.

Andra forskare läto den elektriska strömmen passera ett urladdningsrör, innehållande
förtunnade gaser. Faraday (1791-1867), professor i London, var en av föregångarna; andra
voro Plücker (1801-1868), professor i Bonn, och Hittorf (1824-1914) professor i Münster. De sistnämndas framgångar berodde till stor del på de utmärkta urIaddningsrör, som glasblåsaren Gteiss1er lyckades åstadkomma. I dessa leddes strömmen in genom insmälta platinatrådar, rörets elektroder. Den elektrod genom vilken strömmen inträder, kallas anod, den andra katod. Deras försök upprepades sedermera av den engelske forskaren Crookes (1832-1919). – Plücker och Hittorf upptäckte katodstrålarna, vilka synas utgå från katoden. Fig. 1 visar ett av Hittorfs försök: katodstrålar krökas skruvformigt under inverkan aven magnetisk kraft. I fig. 2 synes ett av Crookes’ urIaddningsrör med rätliniga katodstrålar.

figur-1figur-2

figurn-3Goldstein (f. 1850), fysiker vid Berlins observatorium, upptäckte de s.k. kanalstrålarna; dessa gå i riktningen från anod till katod, och kunna tydligt observeras endast om katoden är genomborrad av hål eller kanaler och så placerad, att strålarna kunna fortsätta genom katoden: de iakttas bakom katoden. (Fig. 3.)

figurn-4Röntgen (1845-1923), Professor i Würzburg
och München, gjorde medan han var sysselsatt med undersökningar över katodstrålar en egendomlig iakttagelse, som ledde till upptäckten av Röntgenstrålarna. (Fig. 4) Röntgens oväntade framgång gav impuls till ivriga forskningar efter nya strålar. Den franske fysikern Becquerel (1852 -1908) fann den radioaktiva strålningen. Hans upptäckt var alltså frukten
av ett direkt sökande.

Under fysikens utveckling göras upptäckter än helt oväntat, än som resultat av ett ihärdigt
sökande. Men ingen kan göra en upptäckt utan en god iakttagelseförmåga och kritiska
undersökningar. Å andra sidan skänker ett enbart insamlande av observationsmaterial utan vägledande teorier ingen överblick och bidrar endast långsamt till forskningens framåtskridande. För vetenskapens utveckling är det lyckligast, när det filosofiska och matematiska tänkandet arbetar hand i hand med experimenten.

BOCKER ATT LÄSA:
Tallqvist, Hj.: Fysikens renässans. (Albert Bonnier 1924. 180 sid, 2,75, inb. 3.75.)
Hart, I. B. och Littmarck. K,: Vetenskapens banbrytare. (Lindblads förlag, 1926. 3 delar
á 1,75.)
Beckman, Anna: Strålar och strålning, (P. A. Norstedt & Söner 1930, 110 sid. I,50, inb. 3,25.)

Det här inlägget postades i Radioinfomation och har märkts med etiketterna . Bokmärk permalänken.